Optimizarea „Bayesian” a hiperparametrelor într -un model de învățare automată folosind pachetul BayesianRVFL

URMĂREȘTE-NE
16,065FaniÎmi place
1,142CititoriConectați-vă

În această postare, voi demonstra cum să folosesc bayesianrvfl Pachet pentru optimizarea „Bayesian” a hiperparametrelor într -un model de învățare automată. Vom folosi Sonar set de date din mlbench Pachetați și optimizați hiperparametre pentru un model XGBOOST.

The surrogate model used for Bayesian optimization is a Non-Bayesian Gaussian Random Vector Functional Link (RVFL) network (instead of a Gaussian Process) (see Chapter 6), whose number of nodes in the hidden layer and volatility of residuals are chosen by using Estimarea probabilității maxime (Mle). Acest model surogat este instruit pe 10 rezultate ale evaluărilor funcționale obiective și o funcție de achiziție de îmbunătățire preconizată este utilizată pentru a determina următorul punct de eșantion în spațiul hiperparameter.

options(repos = c(
                    techtonique = "https://r-packages.techtonique.net",
                    CRAN = "https://cloud.r-project.org"
                ))
install.packages("bayesianrvfl")
install.packages("mlbench")                

library("bayesianrvfl")
library("mlbench")

data(Sonar)

library(caret)
set.seed(998)
inTraining <- createDataPartition(Sonar$Class, p = .75, list = FALSE)
training <- Sonar( inTraining,)
testing  <- Sonar(-inTraining,)

objective <- function(xx) {
  fitControl <- trainControl(method = "cv", 
                           number = 3,
                           classProbs = TRUE,
                           summaryFunction = twoClassSummary)

  set.seed(825)
  model <- train(Class ~ ., data = training, 
                method = "xgbTree", 
                trControl = fitControl, 
                verbose = FALSE, 
                tuneGrid = data.frame(max_depth = floor(xx(1)),
                                      eta = xx(2),
                                      subsample = xx(3), 
                                      nrounds = floor(xx(5)),
                                      gamma = 0,
                                      colsample_bytree = xx(4),
                                      min_child_weight = 1),
                metric = "ROC")
  
  # Return the ROC value (higher is better)
  return(-getTrainPerf(model)$TrainROC)
}

(res_rvfl <- bayesianrvfl::bayes_opt(objective, # objective function
          lower = c(1L, 0.001, 0.7, 0.7, 100L), # lower bound for search
          upper = c(8L, 0.1, 1, 1, 250L), # upper bound for search
          type_acq = "ei", # type of acquisition function
          nb_init = 10L, # number of points in initial design
          nb_iter = 40L, # number of iterations of the algo
          surrogate_model = "rvfl")) # surrogate model
xx <- res_rvfl$best_param

fitControl <- trainControl(method = "none", 
                           classProbs = TRUE)

  set.seed(825)
  model <- train(Class ~ ., data = training, 
                method = "xgbTree", 
                trControl = fitControl, 
                verbose = FALSE, 
                tuneGrid = data.frame(max_depth = floor(xx(1)),
                                      eta = xx(2),
                                      subsample = xx(3), 
                                      nrounds = floor(xx(5)),
                                      gamma = 0,
                                      colsample_bytree = xx(4),
                                      min_child_weight = 1),
                metric = "ROC")

preds <- predict(model, newdata = testing)

caret::confusionMatrix(data = preds, reference = testing$Class)

## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  M  R
##          M 22  4
##          R  5 20
##                                          
##                Accuracy : 0.8235         
##                  95% CI : (0.6913, 0.916)
##     No Information Rate : 0.5294         
##     P-Value (Acc > NIR) : 1.117e-05      
##                                          
##                   Kappa : 0.6467         
##                                          
##  Mcnemar's Test P-Value : 1              
##                                          
##             Sensitivity : 0.8148         
##             Specificity : 0.8333         
##          Pos Pred Value : 0.8462         
##          Neg Pred Value : 0.8000         
##              Prevalence : 0.5294         
##          Detection Rate : 0.4314         
##    Detection Prevalence : 0.5098         
##       Balanced Accuracy : 0.8241         
##                                          
##        'Positive' Class : M              
## 

# Get probability predictions for the whole test set
probs <- predict(model, newdata = testing, type = "prob")

# Create calibration curve data
create_calibration_data <- function(probs, actual, n_bins = 10) {
  # Convert actual to numeric (0/1)
  actual_numeric <- as.numeric(actual == levels(actual)(2))
  
  # Create bins based on predicted probabilities
  bins <- cut(probs(,2), breaks = seq(0, 1, length.out = n_bins + 1), 
              include.lowest = TRUE)
  
  # Calculate mean predicted probability and actual outcome for each bin
  cal_data <- data.frame(
    bin_mid = tapply(probs(,2), bins, mean),
    actual_freq = tapply(actual_numeric, bins, mean),
    n_samples = tapply(actual_numeric, bins, length)
  )
  
  cal_data$bin <- 1:nrow(cal_data)
  return(na.omit(cal_data))
}

# Generate calibration data
cal_data <- create_calibration_data(probs, testing$Class)

# Plot calibration curve
library(ggplot2)
ggplot(cal_data, aes(x = bin_mid, y = actual_freq)) +
  geom_point(aes(size = n_samples)) +
  geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "red") +
  geom_line() +
  xlim(0,1) + ylim(0,1) +
  labs(x = "Predicted Probability",
       y = "Observed Frequency",
       size = "Number ofnSamples",
       title = "Calibration Curve for XGBoost Model") +
  theme_minimal()

# Calculate calibration metrics
brier_score <- mean((probs(,2) - as.numeric(testing$Class == levels(testing$Class)(2)))^2)
cat("Brier Score:", round(brier_score, 4), "n")

Image-titlu-here

## Brier Score: 0.1268

Dominic Botezariu
Dominic Botezariuhttps://www.noobz.ro/
Creator de site și redactor-șef.

Cele mai noi știri

Pe același subiect

LĂSAȚI UN MESAJ

Vă rugăm să introduceți comentariul dvs.!
Introduceți aici numele dvs.